Торий

Торий – один из немногих радиоактивных элементов, открытых задолго до появления самого понятия «радиоактивность».

Любопытно, что название этого элемента появилось на тридцать лет раньше, чем он был в действительности открыт.

Сначала было имя

Выдающегося шведского ученого Йенса Якоба Берцелиуса справедливо называли некоронованным королем химиков первой половины XIX столетия. Человек энциклопедических знаний и превосходный аналитик, Берцелиус работал очень плодотворно и почти никогда не ошибался. Авторитет его был так высок, что большинство химиков его времени, прежде чем обнародовать результат какой-либо важной работы, посылали сообщение о ней в Стокгольм, к Берцелиусу. В его лаборатории были определены атомные веса большинства известных тогда элементов (около 50), выделены в свободном состоянии церий и кальций, стронций и барий, кремний и цирконий, открыты селен и торий. Но именно при открытии тория непогрешимый Берцелиус совершил две ошибки.

В 1815 г., анализируя редкий минерал, найденный в округе Фалюн (Швеция), Берцелиус обнаружил в нем окись нового элемента. Этот элемент был назван торием в честь всемогущего древнескандинавского божества Тора. (По преданию, Тор был коллегой Марса и Юпитера одновременно – богом войны, грома и молнии.)

Прошло десять лет, прежде чем Берцелиус обнаружил свою ошибку: вещество, которое он считал окисью тория, на самом деле оказалось фосфатом уже известного иттрия.

«Похоронив» торий, Берцелиус же его «воскресил». Через три года из Норвегии ему прислали еще один редкий минерал, который теперь называют торитом (ThSiO4). Торит содержит до 77% окиси тория ThO2. Обнаружить столь явный компонент Берцелиусу не составило особого труда. Исследовав выделенную землю, Берцелиус убедился, что это окись нового элемента, к которому и перешло название «торий».

Получить чистый металлический торий Берцелиусу не удалось. Правда, он восстановил калием фтористые соединения нового элемента и получил серый металлический порошок, сильно загрязненный примесями. Из-за этих примесей произошла вторая ошибка, вернее, серия ошибок при описании свойств элементарного тория.

Чистый препарат тория был получен лишь в 1882 г. другим известным шведским химиком – первооткрывателем скандия Ларсом Фредериком Нильсоном.

Следующее важное событие в истории элемента № 90 произошло в 1898 г., когда независимо друг от друга и практически одновременно Мария Склодовская-Кюри и немецкий ученый Герберт Шмидт обнаружили, что торий радиоактивен. Склодовская-Кюри отметила тогда же, что активность чистого тория даже выше активности урана.

Именно радиоактивность – основная причина нынешнего повышенного интереса к элементу № 90. Торий все шире используется в атомной энергетике как сырье для получения первичного ядерного горючего; но не будем забегать вперед.

...кроме радиоактивности

Совершенно очевидно, что первое знакомство с торием не сулило человечеству ничего особенного. Обычный серо-белый металл, довольно тугоплавкий (температура плавления 1750°C), но малопрочный и очень неустойчивый к действию коррозии. К примеру, в горячей воде скорость коррозии тория и сплавов на его основе в сотни раз выше, чем у алюминия. Следовательно, в качестве конструкционного материала или основы для конструкционных материалов торий не представлял интереса.

Вскоре выяснилось, что добавки тория упрочняют сплавы на основе железа и меди, но никаких особых преимуществ перед другими легирующими элементами торий не имел. Прошло много лет, прежде чем легирование торием приобрело практическое значение. В авиационной и оборонной технике наших дней широко используются многокомпонентные сплавы на основе магния. Наряду с цинком, марганцем, цирконием в их состав входят торий и редкоземельные элементы. Торий заметно повышает прочность и жаростойкость этих легких сплавов, из которых делают ответственные детали реактивных самолетов, ракет, электронных устройств...

Сейчас торий используют и как катализатор – в процессах органического синтеза и крекинга нефти, а также при получении жидкого топлива из угля. Но все это, если можно так выразиться, приобретения XX в. В XIX же веке выход в практику нашло лишь одно соединение элемента № 90 – его двуокись ThO2. Ее применяли в производстве газокалильных сеток.

В конце XIX в. газовое освещение было распространено больше, чем электрическое. Изобретенные видным австрийским химиком Карлом Ауэром фон Вельсбахом колпачки из окислов церия и тория увеличивали яркость и преобразовывали спектр пламени газовых рожков – свет их становился ярче, ровнее.

Из двуокиси тория – соединения весьма тугоплавкого – пробовали делать и тигли для выплавки редких металлов. Но, выдерживая высочайшие температуры, это вещество частично растворялось во многих жидких металлах и загрязняло их. Потому тигли из ThO2 широкого распространения не получили.

Вероятно, разговор о практическом применении тория был бы вообще беспредметным, если бы человечество располагало лишь торием, заключенным в торите. Минерал этот очень богат, но редок, так же как и другой богатый ториевый минерал – торианит (Th, U)O2, содержащий от 45 до 93% ThO2.

Однако еще в конце прошлого века при участии Ауэра фон Вельсбаха на Атлантическом побережье Бразилии были начаты разработки монацитовых песков. Минерал монацит – важнейший источник и редкоземельных элементов, и тория. В общем виде формулу этого минерала обычно пишут так: (Ce, Th)PO4, но он содержит, кроме цезия, еще и лантан, и празеодим, и неодим, и другие редкие земли. А кроме тория – уран.

Тория в монаците, как правило, содержится от 2,5 до 12%. Богатые монацитовые россыпи, помимо Бразилии, есть в Индии, США, Австралии, Малайзии. Известны и жильные месторождения этого минерала – на юге Африки.

Упоминавшиеся выше торит и торианит (и разновидность последнего – ураноторианит) тоже считаются промышленными минералами тория, но их доля в мировом производстве этого элемента совершенно незначительна. Самое известное месторождение ураноторианита находится на острове Мадагаскар.

Считать торий очень уж редким металлом было бы неправильно, В земной коре его 8·10–4%, примерно столько же, сколько свинца. Но торцевое сырье – это всегда сырье комплексное.

С пляжа на комбинат

Монацит – минерал прочный, устойчивый против выветривания. При выветривании горных пород, особенно интенсивном в тропической и субтропической зонах, когда почти все минералы разрушаются и растворяются, монацит не изменяется. Ручьи и реки уносят его к морю вместе с другими устойчивыми минералами – цирконом, кварцем, минералами титана. Волны морей и океанов довершают работу по разрушению и сортировке минералов, накопившихся в прибрежной зоне. Под их влиянием происходит концентрирование тяжелых минералов, отчего пески пляжей приобретают темную окраску. Так на пляжах формируются монацитовые россыпи. Но, естественно, и там монацитовый песок перемешан с кварцевым, цирконовым, рутиловым... Поэтому первая стадия производства тория – получение чистого монацитового концентрата.

Для отделения монацита используют разные способы и приспособления. Первоначально грубо отделяют его на дезинтеграторах и концентрационных столах, используя разницу в плотности минералов и их смачиваемости различными жидкостями. Тонкого разделения достигают путем электромагнитной и электростатической сепарации. Полученный таким образом концентрат содержит 95...98% монацита. После этого начинается самое сложное. Отделение тория чрезвычайно затруднено, поскольку монацит содержит элементы, по свойствам близкие к торию, – редкоземельные металлы, уран... Расскажем о выделении тория в самых общих чертах.

Прежде всего минерал «вскрывают». Для этого в промышленных условиях монацит обрабатывают горячими концентрированными растворами серной кислоты или едкого натра. Образующиеся в первом случае сульфаты тория, урана и редких земель растворимы в воде. В случае же щелочного вскрытия ценнейшие компоненты монацита остаются в осадке в виде твердых гидроокисей, которые затем превращают в растворимые соединения. «Отлучение» урана и тория от редких земель происходит на следующей стадии. Сейчас для этого в основном используют процессы экстракции. Чаще всего из водных растворов торий и уран экстрагируют несмешивающимся с водой трибутилфосфатом. Разделение урана и тория происходит на стадии избирательной реэкстракции. При определенных условиях торий из органического растворителя перетягивается в водный раствор азотной кислоты, а уран остается в органической фазе. Хотим еще раз подчеркнуть, что здесь описана лишь принципиальная схема – на практике все обстоит значительно сложнее.

После того как торий отделен, нужно превратить его соединения в металл. Распространены два способа: восстановление двуокиси ThO2 или тетрафторида ThF4 металлическим кальцием и электролиз расплавленных галогенидов тория. Обычно продуктом этих превращений бывает ториевый порошок, который затем спекают в вакууме при 1100...1350°C.

Многочисленные сложности ториевого производства усугубляются необходимостью надежной радиационной защиты.

Торий и наука о радиоактивности

Радиоактивность – важнейшее свойство тория. Но первые же глубокие исследования этого явления на новом объекте дали неожиданные результаты. Радиоактивность тория отличалась странным непостоянством: хлопнет ли дверь, чихнет или закурит экспериментатор – интенсивность излучения меняется. Первыми натолкнулись на эту странность, начав работу с торием, два молодых профессора Мак-Гиллского университета в Монреале – Э. Резерфорд и Р.Б. Оуэнс. Они очень удивились, когда после тщательного проветривания лаборатории радиоактивность тория стала вовсе незаметной! Радиоактивность зависит от движения воздуха?!

Естественно было предположить, что активность «сдувается» с тория потому, что в процессе распада образуется радиоактивный газообразный продукт. Он был обнаружен, изучен и назван эманацией тория, или тороном. Сейчас это название употребляется сравнительно редко: торон больше известен как изотоп радон-220.

Вскоре, в 1902 г., в той же монреальской Мак-Гиллской лаборатории Ф. Содди выделил из раствора ториевой соли еще один новый радиоактивный продукт – торий-X. Торий-X обнаруживали везде, где присутствовал торий, но после отделения от тория интенсивность его излучения быстро падала. Менее чем за четыре дня она уменьшилась вдвое и продолжала падать в полном соответствии с геометрической прогрессией! Так в физику пришло понятие о периоде полураспада. Позже было установлено, что торий-X представляет собой сравнительно короткоживущий изотоп радий-224.

Со временем были обнаружены достаточно многочисленные продукты алхимических превращений тория. Резерфорд изучил их, установил генетические связи. На основе этих исследований им был сформулирован закон радиоактивных превращений, а в мае 1903 г. ученый предложил схему последовательных распадов естественного радиоактивного ряда тория.

Торий оказался родоначальником довольно большого семейства. «Родоначальник», «семейство» – эти слова приведены здесь не ради образа, а как общепринятые научные термины. В своем семействе торий можно было бы назвать еще и патриархом: он отличается наибольшим долголетием в этом ряду. Период полураспада тория-232 (а практически весь природный торий – это изотоп 232Th) 13,9 млрд лет. Век всех «отпрысков знатного рода» несравненно короче: самый долгоживущий из них – мезоторий-I (радий-228) имеет период полураспада 6,7 года. Большинство же изотопов ториевого ряда «живет» всего дни, часы, минуты, секунды, а иногда и миллисекунды. Конечный продукт распада тория-232 – свинец, как и у урана. Но «урановый» свинец и «ториевый» свинец не совсем одно и то же. Торий в конце концов превращается в свинец-208, а уран-238 – в свинец-206.

Постоянство скорости распада и совместное присутствие в минералах материнских и дочерних изотопов (в определенном радиоактивном равновесии) позволили еще в 1904 г. установить, что с их помощью можно измерять геологический возраст. Первым эту идею высказал один из светлейший умов своего времени – Пьер Кюри.

Торий радиоактивный

Предыдущую часть нашего рассказа можно было бы несколько высокопарно, но в общем точно назвать «служение радиоактивного тория чистой науке». Но науке положено поворачиваться лицом к практике. Первая попытка использовать на практике радиоактивность тория была предпринята в 1913 г. Его «дитя» – мезоторий стали применять в производстве светящихся красок, которыми наносили цифры на циферблаты часов. Спустя несколько лет обнаружили, что со временем циферблаты перестают светиться (причину мы знаем: относительно малое время жизни мезотория). Но не это стало причиной спешного изгнания мезотория из лакокрасочного производства: в 20-х годах заметно увеличилась смертность среди работниц, выписывавших кисточками цифры на циферблатах. Патологоанатомы констатировали накопление мезотория в костях погибших. Выяснилось, что, как многие рисовальщики, работницы заостряли концы кисточек губами. При этом они проглатывали за год до 1,75 г краски и с ней почти 10 мг мезотория...

Но мезоторий все-таки не сам торий. А как обстоит дело с ним? Как ни странно, поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке – кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт – нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...

Выходит, что «вкушать» торий не столь опасно, как дорого: упомянутое количество элемента № 90 стоит около четырех долларов. И все же есть торий не следует даже очень богатым людям. Чрезвычайно опасно попадание тория в кровь. В этом, к сожалению, люди убедились не сразу.

В 20...30 годах при заболеваниях печени и селезенки для диагностических целей применяли препарат «торотраст», включавший окись тория. Врачи, уверенные в нетоксичности ториевых препаратов, прописывали торотраст тысячам пациентов. И тут начались неприятности. Несколько человек погибли от заболевания кроветворной системы, у некоторых возникли специфические опухоли.

Оказалось, что, попадая в кровь в результате инъекций, торий осаждает протеин и тем способствует закупорке капилляров. Отлагаясь в костях близ кроветворных тканей, природный торий-232 становится источником гораздо более опасных для организма изотопов – мезотория, тория-228, торона... Естественно, что торотраст был спешно изъят из употребления.

Как видим, первые попытки применить радиоактивный торий на практике закончились неудачно. Элементом первостепенной важности, стратегическим металлом торий стал лишь после второй мировой войны.

Как и всякий четно-четный изотоп (четное число протонов и нейтронов), торий-232 не способен делиться тепловыми нейтронами и быть ядерным горючим. Но под действием тех же нейтронов с торием происходит вот что:

23290Th + 10n23390Th –(β)→ 23391Pa –(β)→ 23392U.

А уран-233 – отличное ядерное горючее, поддерживающее цепную реакцию.

Уран-233 имеет некоторые преимущества перед другими видами ядерного горючего: при делении его ядер выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром плутония-239 или урана-235, дает 2,03...2,08 новых нейтронов, а урана-233 – намного больше – 2,37!

Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей, уран-232, – альфа- и гамма-излучатель с периодом полураспада 73,6 года. Тем не менее ториевые ядерные реакторы есть.

Пока расход металлического тория в атомных реакторах намного меньше, чем урана. Его использованию препятствует и то обстоятельство, что торий дороже урана. Уран легче выделить. Некоторые рудные урановые минералы (уранит, урановая смолка) – это простые окислы урана. У тория таких простых минералов (имеющих серьезное промышленное значение) нет. А попутное выделение из редкоземельных минералов, как мы уже знаем, осложнено сходством тория с элементами семейства лантана.

Тем не менее о торцевой ядерной энергетике следует думать всерьез. Запасы этого элемента только в редкоземельных рудах втрое превышают все мировые запасы урана. Это неминуемо приведет к увеличению роли ториевого ядерного горючего в энергетике будущего.

Соединения тория

Поскольку ранее речь шла почти исключительно о тории и продуктах его распада, здесь мы коротко расскажем о важнейших соединениях элемента № 90. Впрочем, эпитет «важнейшие», видимо, не совсем уместен: только одно соединение элемента № 90 – его двуокись ThO2 имеет самостоятельное применение, остальные же важны лишь для науки и... для производства тория.

Белый тугоплавкий порошок двуокиси тория имеет структуру флюорита. Его получают при сжигании тория. То же самое вещество ThO2 образует защитную пленку на корродирующемся, окисляющемся тории. ThO2 – соединение довольно прочное и весьма термостойкое. Достаточно сказать, что остаток сгоревшей калильной сетки газового фонаря представляет собой в основном двуокись тория.

Существование двух других кислородных соединений элемента № 90 остается дискуссионным. Моноокись тория ThO, видимо, все-таки существует. В литературе описана ее кристаллическая решетка, аналогичная решетке хлористого натрия. Под действием перекиси водорода образуется перекись тория, которой раньше приписывали формулу Th2O7. Сейчас установлено, что состав этого вещества значительно сложнее, поскольку в его молекулу входят и захваченные из раствора анионы.

Нерастворимое в воде соединение состава Th(OH)4 имеет щелочной характер и потому, растворяясь в кислотах, не растворяется в щелочах. Начинает выпадать в осадок уже при pH = 3,5, в то время как гидроокиси трехвалентных редких земель получают лишь при pH = 7...8. Это свойство используют для грубого разделения редкоземельных элементов и тория.

Известно довольно много галогенидов тория: три хлорида, три бромида, три иодида и фторид (валентности тория в этих соединениях: 4+, 3+ и 2+). Хлориды и фторид бесцветны, бромиды и иодиды желтого цвета. Безводный тетрахлорид очень гигроскопичен. Для практики наиболее важны фторид ThF4 и иодид ThI4. Первый используют для получения тория электролизом и для растворения его в азотной кислоте: чистый торий в чистой HNO3 не растворяется, необходима добавка фторида. Тетраиодид же используют для получения тория высокой чистоты, поскольку при температуре выше 90°C это соединение способно к термической диссоциации: ThI4 → Th + 2I2.

При нагревании тория в атмосфере водорода до 400...600°C образуется его гидрид ThH2. Если, не меняя условий, начать снижать температуру, то при 250...320°C происходит дальнейшее насыщение тория водородом и образуется гидрид состава Th4H15. Иногда гидриды тория применяют для получения высокочистого тория.

Вместо заключения

О том, что в наши дни роль тория в энергетике возрастает, свидетельствуют такие цифры. В начале 70-х годов расход металлического тория во всех ядерных реакторах капиталистических стран не превышал нескольких сот килограммов в год. По последним данным, только в США потребление тория в 1975 г. составило 50 тонн. Рост налицо, и значительный рост.